

SIDDHARTH GROUP OF INSTITUTIONS: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

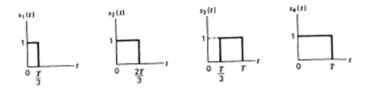
QUESTION BANK (DESCRIPTIVE)

Subject with Code: DC (19EC0415) Course & Branch: B. Tech& ECE **Regulation:** R19 Year & Sem: III-B.Tech & I SEM

<u>UNIT –I</u>

Introduction & Source Coding Systems

1.	a)	Explain the DPCM system with neat diagram.	[L2] [CO1] [8M]	
	b)	What are the advantages & disadvantages of DPCM?	[L1] [CO1] [4M]	
2.	a)	Write the differences between PCM, DPCM, and DM.	[L3] [CO1] [8M]	
	b)	List the Advantages of DM.	[L1] [CO1] [4M]	
3.	a)	Explain the delta modulation system with suitable diagrams.	[L2] [CO1] [8M]	
	b)	Explain Slope overload Distortion & Granular Noise.	[L2] [CO1] [4M]	
4.	a)	With a neat block diagram explain PCM transmitter and receiver.	[L4] [CO1] [8M]	
	b)	What are the advantages & disadvantages of PCM?	[L1] [CO1] [4M]	
5.	a)	Discuss the Noise considerations in PCM systems.	[L2] [CO1] [6M]	
	b)	Draw and explain the block diagram of regenerative repeaters.	[L4] [CO1] [6M]	
6.	a)	Derive the quantization noise in PCM.	[L4] [CO1] [6M]	
	b)	Derive the S/N ratio of PCM.	[L4] [CO1] [6M]	
7.	a)	State sampling theorem.	[L1] [CO1] [6M]	
	b)	Consider an audio signal consisting of the sinusoidal term given as $x(t) = 3\cos(t)$		
		$(500\pi t)$.	[L5] [CO1] [6M]	
		i) Determine the SNR noise ratio. when this is quantized using 10 bits PCM.		
		ii) How many bits of quantization are needed to achieve a SNR ratio of at least		
8.	a)	Explain the Process of Quantization through one Example.	[L2] [CO1] [6M]	
	b)	Discuss the different types of Quantization in Detail.	[L2] [CO1] [6M]	
9.	a)	Draw the block diagram of digital communication system? Explain each		
	b)	block. A Television signal having a bandwidth of 4.2 MHz is transmitted using	[L4] [CO1] [6M]	
	U)	binary PCM system. Given that the number of quantization levels is 512.		
		Determine	[L3] [CO1] [6M]	
		i) Codeword length. ii) Transmission Bandwidth.		
		iii) Final Bit rate. iv) Output SNR ratio.		
10.	a)	Explain fundamental limitations of Communication Systems.	[L2] [CO1] [6M]	
	b)	Compare Analog and Digital Communication.	[L5] [CO1] [6M]	


<u>UNIT –II</u>

BASEBAND PULSE TRANSMISSION

1.	a)	Explain the matched filter.	[L2] [CO2] [6M]
	b)	Derive the properties of matched filter.	[L4] [CO2] [6M]
2.		Explain in detail about Inter symbol interference and its effects.	[L2] [CO2] [12M]
3.	a)	Describe the baseband M-array PAM Transmission system.	[L1] [CO2] [6M]
	b)	Explain in detail about modified duo binary signaling scheme.	[L2] [CO2] [6M]
4.	a)	What is ISI? Draw the basic block diagram of baseband binary data	
		transmission.	[L1] [CO2] [6M]
	b)	Explain the rectangular pulse for a matched filter.	[L2] [CO2] [6M]
5.		Derive the expression for the Nyquist criterion for distortion less baseband	
		Transmission in the absence of noise in terms of time domain &	
		Frequency domain.	[L4] [CO2] [12M]
6.	a)	Derive the expression for impulse response of a matched filter.	[L4] [CO2] [6M]
	b)	What are the remedies to reduce ISI.	[L1] [CO2] [6M]
7.		A polar NRZ waveform has to be received into the help of a matched filter.	[L3] [CO2] [12M]
		Here binary '1' is represented as a rectangular positive pulse. Also, binary '0' is represented by a rectangular negative pulse. determine the impulse response of the matched filter. Also sketch it.	
8.		What is correlative coding? Explain its types.	[L1] [CO2] [12M]
9.	a)	What are the effects of ISI?	[L1] [CO2] [6M]
	b)	Write a brief note on Eye pattern and construct the diagram.	[L3] [CO2] [6M]
10.	0)	• •	
10.		Explain duo-binary signaling scheme through one example.	[L2] [CO2] [12M]

Signal Space Analysis

- 1. a) What is Gram-Schmidt orthogonalization procedure? Explain. [L1] [CO3] [6M] b) Write a brief note on signal constellation diagram. [L3] [CO3] [6M]
- 2. Describe the concept of continuous AWGN channel into a vector channel. [L2] [CO3] [12M]
- Consider the signals $s_1(t)$, $s_2(t)$, $s_3(t)$, $s_4(t)$, shown in fig. Find the orthogonal **3.** basis function using Gram Schmidt orthogonalization procedure. [L5] [CO3] [12M]

- 4. Draw the block diagram of the structure and behavior of Matched filter [L4] [CO3] [12M] Receiver.
- 5. a) Explain the concept of Schwarz Inequality. [L2] [CO3] [6M]
- b) Explain signal representation of a signal N=2and M=3. [L2] [CO3] [6M]
- 6. a) What is the concept of orthogonal basis function? [L1] [CO3] [6M]
- b) Write the condition for Orthogonality for basis function. [L3] [CO3] [6M] 7. a) Draw the block diagram of a most basic form of digital communication
- system. [L4] [CO3] [6M]
- b) Illustrate optimum receiver for AWGN channel. [L2] [CO3] [6M]
- 8. a) Draw the signal constellation diagrams for N=M=2. [L4] [CO3] [6M]
 - b) Explain the geometrical representation of signals. [L2] [CO3] [6M]
- 9. Explain the following [L2] [CO3] [12M]
 - i) Additive White Gaussian noise. ii) Orthogonality.
 - iii) Signal vector. iv) Synthesizer.
- **10.** a) Explain the concept of AWGN channel. [L2] [CO3] [6M]
 - b) With a neat sketch explain the working of correlation receiver. [L3] [CO3] [6M]

<u>UNIT -IV</u>

Passband Data Transmission

1.	a)	Compare all the digital modulation techniques.	[L2] [CO4] [6M]
1,	b)	Derive the probability of error for a coherent QPSK system.	[L4] [CO4] [6M]
2.	ĺ.		
2.	a)	Sketch with a neat diagram of M-array PSK transmitter and receiver.	[L3] [CO4] [6M]
	b)	What are the parameters you can consider to choose the modulation techniques?	[L1] [CO4] [6M]
3.	a)	Draw the block diagram of ASK transmitter and receiver and explain the operation.	[L4] [CO4] [6M]
	b)	Derive an expression for probability of error in BFSK.	[L4] [CO4] [6M]
4.	a)	Derive an expression for probability of error of coherent binary ASK.	[L4] [CO4] [6M]
	b)	What is Bandwidth of BPSK, BFSK?	[L1] [CO4] [6M]
5.	a)	Derive the expression for probability of error for BPSK.	[L4] [CO4] [6M]
	b)	How will you differentiate binary PSK and M-PSK? Explain with block diagrams.	[L1] [CO4] [6M]
6.	a)	Illustrate the pass band transmission model with neat diagram.	[L3] [CO4] [6M]
	b)	Explain pass band transmission with band pass transmission.	[L2] [CO4] [6M]
7.	a)	Describe the generation and detection of DPSK.	[L2] [CO4] [6M]
	b)	A binary data stream 101101100 is to be transmitted using DPSK. Determine the encoded and decoded output.	[L3] [CO4] [6M]
8.		Draw the block diagram of QPSK transmitter & receiver and explain each block in detail.	[L4] [CO4] [12M
9.	a)	Define coherent digital modulation technique.	[L1] [CO4] [4M]
	b)	i) What is meant by DPSK?	[L1] [CO4] [2M]
		ii) Write a brief note on BPSK.	[L3] [CO4] [3M]
		iii) Write the two differences between QPSK and BPSK.	[L3] [CO4] [3M]
10.	a)	Describe the generation and detection of BPSK.	[L2] [CO4] [6M]
	b)	Discuss in brief about coherent detection of binary FSK.	[L2] [CO4] [6M]

UNIT –V

Channel Coding

1. A generator matrix for a (6, 3) block code is given below

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- List all the code vectors. [L1] [CO5] [6M] a)
- Find out minimum distance & weight of the code. [L1] [CO5] [3M] b)
- How many errors can be detected &corrected? c) [L1] [CO5] [3M]
- 2. Explain the concept of matrix representation of Linear block [L2] [CO5] [6M]
 - codes. a)
- Write short notes on Error detection and correction codes. [L3] [CO5] [6M] b)
- 3. What are the types of parity check codes explain with neat [L1] [CO5] [6M] diagrams? a)
 - Explain the concept of Parity check matrix for linear block codes. [L2] [CO5] [6M] b)

The parity check matrix for a (7, 4) block code is given below

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- Find the generator matrix (G). a) [L1] [CO5] [6M]
- [L1] [CO5] [5M] List all the code vectors. b)
- 5. What is forward error correction system and explain in detail? [L1] [CO5] [6M] a)
 - Describe the matrix representation of linear block codes. [L2] [CO5] [6M]
- 6. Draw and explain the block diagram of ARQ system in detail. [L4] [CO5] [6M] a)
- b) Write about various types of ARQ systems. [L3] [CO5] [6M]

7. The Generator matrix(G) for a (7, 4) block code is given below

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- a) Find the Parity check matrix (G). [L1] [CO5] [6M]
- Find code vectors for any eight messages. [L1] [CO5] [6M] b)
- 8. Explain the Convolutional Encoding and Decoding methods. [L2] [CO5] [6M] a)
 - Discuss in brief about sequential decoding of convolutional codes. [L2] [CO5] [6M]

10. For a systematic (7, 4) linear block code the sub matrix 'P' is [L4 [CO5] [12M] given as

Detect & correct the error using syndrome vector for the code vectors $Y_A = [0111110] Y_B = [1011100] C Y_C = [1010000]$

Course Code:19EC0415	QUESTION BANK	R19
DIGITAL COMMUNICATIONS		Page 6